Delta-3D-Drucker - zugrunde liegende Mathematik
Abstand Linearantrieb zu Druckkopf
Zuerst ein Blick von oben. Der Koordinatenursprung befindet sich in der Mitte der Druckplattform. A, B und C sind die Positionen der drei vertikalen Linearantriebe. W ist die Position der Druckkopf
Berechnet werden sollen die Abstände a, b und c. Dazu werden zuerst die Vektoren A, B und C jeweils von W subtrahiert und dann deren Betrag gebildet.
a = |(W - A)| = √((Wx - Ax)² - (Wy - Ay)²) b = |(W - B)| = √((Wx - Bx)² - (Wy - By)²) c = |(W - C)| = √((Wx - Cx)² - (Wy - Cy)²)
Vertikale Position der Linearantriebe
Jetzt der Blick von der Seite (am Beispiel von Linearantrieb A). W ist wieder die Position des Druckkopf, wobei dessen x-Koordinate eine der oben berechneten Abstände a, b oder c ist und die y-Koordinate die Höhe z über dem Druckbett ist. r ist die Länge der Streben von den Schlitten der Linarantriebe zum Druckkopf.
Berechnet werden sollen die vertikalen Positionen der Schlitten der Linearantriebe. Pythagoras lässt grüßen.
ha = z + √(r² - a²) hb = z + √(r² - b²) hc = z + √(r² - c²)
Wenn man die Formeln für die Berechnung von a, b und c noch mit reinpackt und vereinfacht, kommt folgendes heraus.
ha = z + √(r² - (Wx - Ax)² - (Wy - Ay)²) hb = z + √(r² - (Wx - Bx)² - (Wy - By)²) hc = z + √(r² - (Wx - Cx)² - (Wy - Cy)²)